Tuesday, September 13, 2011

GATE 2012 - Syllabus for Microbiology (XL: Section K)

Graduate Aptitude Test in Engineering - GATE 2012

Last Date : 17 October 2011 (Apply Online)
Start Date : 12 September 2011

Organizing Institute : Indian Institute of Technology Delhi

Graduate Aptitude Test in Engineering (GATE) is an all India examination administered and conducted jointly by the Indian Institute of Science and seven Indian Institutes of Technology on behalf of the National Coordination Board - GATE, Department of Higher Education, Ministry of Human Resource Development (MHRD), Government of India.

Candidates have to Apply only ONLINE. The application fee is Rs 1000/- for GENERAL/OBC/ category and Rs 500/- for SC/ST/PD category candidates.
Date of Online Examination: 29-01-2012 (Sunday)       
Date of Offline Examination: 12-02-2012 (Sunday)

Syllabus for Microbiology (XL: Section K)
(Optional Section)

Historical Perspective:
Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases.
Methods in Microbiology:
Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; Light-, phase contrast- and electron-microscopy.
Microbial Taxonomy and Diversity:
Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy.
Prokaryotic and Eukaryotic Cells:
Structure and Function
Prokaryotic Cells:
cell walls, cell membranes, mechanisms of solute transport across membranes, Flagella and Pili, Capsules, Cell inclusions like endospores and gas vesicles; Eukaryotic cell organelles: Endoplasmic reticulum, Golgi apparatus, mitochondria and chloroplasts.
Microbial Growth:
Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth.
Control of Micro-organisms:
Effect of physical and chemical agents; Evaluation of effectiveness of antimicrobial agents.
Microbial Metabolism:
Energetics: redox reactions and electron carriers; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways.
Microbial Diseases and Host Pathogen Interaction:
Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi.
Chemotherapy/Antibiotics:
General characteristics of antimicrobial drugs; Antibiotics: Classification, mode of action and resistance; Antifungal and antiviral drugs.
Microbial Genetics:
Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to E.coli; Phage λ and its life cycle; RNA phages; RNA viruses; Retroviruses; Basic concept of microbial genomics.
Microbial Ecology:
Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants.

No comments:

Post a Comment